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Current Approaches
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!
Simple empirical models: fast, easy to use, but inaccurate 

!
Advanced, physically-based approaches: accurate in 

specific locations, computationally expensive, not very 
adaptable to other environments 

!
Statistical approaches: provides uncertainty on the 

predictions, learns complex spatial-temporal patterns, 
computationally expensive, difficult to implement 
 



A Bayesian Approach to Air Pollution Forecast

Prior belief Likelihood function

Posterior Belief!
A Bayesian approach allows us to: 

Quantify risk – probability distribution over possible models 
Use all available data – data fusion 
Update our hypothesis with new data 
Improve decision support
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Priors over functions
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Other covariance Functions 
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Bayesian modelling
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NICTA Copyright 2012 From imagination to impact 

Nonparametric Bayesian Reasoning with GPs 

•  A prior over the weights induces a prior over functions 
–  e.g. smooth functions 
–  Closeness in input space ! closeness in output space 
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Automatic Parameter Estimation

Given a set of samples

Choose a covariance function

Predict the value of f(x⇤)

X = [x0, . . . ,xN�1]
T

y = [y0, . . . , yN�1]
T

k(xi,xj | ✓)

Log Marginal Likelihood

Regression

µ(f(x⇤))

�(f(x⇤))

Mean
Variance
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Learning Temporal Patterns
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(a) Period of 12 hours (b) Period of 123 hours

(c) Period of 79 hours (d) Period of 45 hours

(e) Period of 29 hours (f) Period of 24 hours

(g) Period of 52 hours (h) Period of 17 hours

Figure 3: Frequency analysis over an interval of 400 hours. The most prominent period
to be considered is (a) 12 hours, followed by (b) 123 hours and so forth. Each new period
incorporated keeps the accumulated sum of all the previous periods, showing how the
approximated function (red line) converges to the actual measurements (black line).

functions multiplying the periodic covariance functions can be set to a unit value to avoid
redundancy. This decreases the number of hyperparameters to 26, to which we then add
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Case Study - Hunter Valley
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First Approach: Separate Models

Body Level One 
Body Level Two 

Body Level Three 
Body Level Four 

Body Level Five
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From space and time to PM10

From space and time to PM2.5

From space, time, and PM10 to PM2.5



PM10 1-hour prediction
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PM10 1-hour prediction

 QQ Plots – PM2.5 + PM10
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PM10 24-hour prediction
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Experimental Results
 PM10 – 1h individual sensor prediction
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Experimental Results
 PM10 – 24h individual sensor prediction
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Experimental Results

 PM2.5 – 1h individual sensor prediction
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Experimental Results

 PM2.5 – 24h individual sensor prediction
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Second Approach: All Together
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Experimental Results

 PM2.5 + PM10 – 1h individual sensor prediction
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Experimental Results

 PM2.5 + PM10 – 24h individual sensor prediction
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} Average Errors (PM10 – 24h) 

Experimental Results
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} Average Errors (PM25 – 24h) 

Experimental Results
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PM10 24-hour prediction
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How do we make these complex 

algorithms easily accessible to EPAs?



Web Interface
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Mobile Phone Apps
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What’s next in air pollution forecast?



Dynamic Monitoring:  
Where and When to Monitor
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(a) Sensor box (b) DiSCmini

Figure 2: The OpenSense box with ozone and CO sensors (a)
and a miniature diffusion size classifier (b).

available air pollution measurements, it can be expected that
in future data-driven approaches will become more viable in
providing accurate and detailed air quality snapshots.

OpenSense Dataset
In the following, we describe our dataset based on two types
of deployments: static installation for long-term sensor test-
ing and mobile sensor boxes on top of trams for high spatial
resolution data acquisition as shown in Fig. 3.
OpenSense System. All OpenSense stations are based on
the prototype platform developed within X-Sense (Buchli et
al. 2011) and further extended for monitoring air pollution
as depicted in Fig. 2. The core of the measurement station is
a Gumstix embedded computer running the Linux operating
system. The station supports GPRS/UMTS and WLAN for
communication and data transfers. A GPS receiver supplies
the station with precise geospatial information. Additionally,
the station is equipped with an accelerometer and has ac-
cess to the tram’s door release signal to assist recognition
of halts and tram stops. The weight of the developed station
is approximately 4.5 kg and the power draw is around 40 W.
In the mobile deployment the station is continuously sup-
plied with power from the tram. To monitor air pollution, the
OpenSense stations are equipped with ozone (e2v), CO (Al-
phasense), and particulate matter (Matter-Aerosol) sensors.
For all gas sensors we use water and dust covers that are
coated with a thin Teflon layer to minimize the influence of
interfering gases.

Additionally, we monitor temperature and humidity to
later convert raw sensor readings into meaningful gas con-
centrations and to compute the sensor calibration parame-
ters. All sensor readings are position and time stamped.
Data Calibration. There are two common approaches for
the calibration of gas sensors that are intended for urban air
pollution monitoring. The calibration can take place either
in the laboratory using reference gas mixtures (Choi et al.
2009) or in the field by placing a sensor close to a static high-
quality reference station delivering reliable pollution con-
centrations (Kamionka, Breuil, and Pijolat 2006). We use
the second approach for sensor calibration, since this way
we can observe the sensor performance under a wide range
of weather conditions and in the presence of other gases.

(a) Tram deployment (b) Fixed station deployment

Figure 3: The OpenSense installations on top of a tram (a)
and next to a static reference station (b).

Thus, the computed calibration parameters already take sen-
sor cross-sensitivity into account. Additionally, the sensor is
calibrated under very similar conditions as in the later de-
ployment (e.g., same hardware and software components,
same water and dust cover) and a considerably larger num-
ber of reference measurements recorded under diverse envi-
ronmental conditions can be used for calibration than what
is typically feasible in the laboratory.

Once the measurement station is deployed on the tram, we
perform automatic on-the-fly sensor calibration by exploit-
ing the fact that public transport vehicles periodically meet
each other or pass by static reference stations. Spatially and
temporally related measurements are used to periodically
adjust calibration parameters, which is necessary to keep the
calibration up to date and filter out possible sensor aging ef-
fects. We implemented three calibration schemes described
in detail in (Hasenfratz, Saukh, and Thiele 2012). As exam-
ple, by using on-the-fly calibration we are able to measure
ozone concentrations with an average error of ±2 ppb com-
pared to the reference measurements. This is remarkable as
the accuracy of the ozone sensor is given as ±20 ppb (e2v).
Data Collection. We currently maintain two deployments
in Zurich: one on top of trams as depicted in Fig. 3(a)
and one next to a national air pollution monitoring net-
work (NABEL) station as shown in Fig. 3(b). Both deploy-
ments are located in Zurich and are briefly described below.

The first measurement station was statically deployed
next to a reference station delivering reliable high-quality
measurements. It is used as a long-term sensor testbed run-
ning since April 2011.

Additional five stations were installed on top trams in
September 2011 and March 2012, respectively. We record
every 5 s the particulate matter pollution and every 20 s the
ozone and CO concentrations. Since the impact of mobility
on the measured concentration is still subject to investiga-
tion, we also annotate the measurements with current accel-
eration speeds. We plan to enhance the deployment on top
of trams to the total of 10 OpenSense stations by the end
of 2012. We also connect the gas sensors to smartphones
and gather measurements along the streets and parks with
no tram access (Hasenfratz et al. 2012).

The measurements are transmitted over GSM to our local
server running GSN (Aberer, Hauswirth, and Salehi 2006)
and are publicly available1. Over the last six months we were

1http://data.opensense.ethz.ch
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1http://data.opensense.ethz.ch
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(a) Ozone (b) PM

Figure 4: Web-based interactive data browsing through the
datasets of ozone and PM measurements in Zurich.

able to gather over 3 million data points with our two de-
ployments. To conveniently access the data, we use location-
based data aggregation and time-based data caching for
fast and efficient data access and interactive data brows-
ing (Keller and Beutel 2011) as illustrated in Fig. 4 for ozone
and particulate matter measurements.

The Challenge
For a given deployment of air quality sensors, there are a
few things we would typically like to infer from the result-
ing dataset, such as what are the pollution levels at some
space and time, where the pollution came from, and how we
could better place the sensors to get a clearer picture. Here
we summarize the general challenge of making sense from
the data concerning three classes of reasoning tasks and dis-
cuss some of the current approaches for solving these tasks.
Forward Reasoning. The first type of reasoning tasks is to
create spatial and temporal interpolations, which involves
deducing more information from the data based on certain
assumptions and inference rules. Typical queries include
pollution levels for locations where no sensors are avail-
able, likely pollution levels at a certain point in the future,
or whether to place advanced warnings of dangerous pol-
lution levels. This is the predominant task for most of the
current air pollution models.
Backward Reasoning. The second type of reasoning tasks
involves working backwards for likely explanations to the
observed measurements. They may include identifying un-
known or unexpected emission sources, or identify the dis-
persion mechanisms. It would require developing a causal
model for air pollution. Unlike forward reasoning, this ap-
pears to be a more complex task due to uncertainties.
Meta-Reasoning. The third type of reasoning tasks con-
cerns with how to manage the sensing resources in order to
better accomplish the forward or backward reasoning tasks.
This may involve sensor placement, sensor scheduling, or a
mixture of both. In the case of community sensing, another
challenge is how to engineer the incentives such, that agents
are driven to optimize the sensing quality.
Acknowledgements. The authors thank Christoph Walser
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data [1]. World-wide, water borne diseases cause the death of 1.5 million under-five
children every year [2].

Current water sampling techniques are often based on grab sampling (e.g. dip-
ping a bottle off the side of a kayak) [3], statically deployed collection systems [4],
or using mobile sensors affixed to Autonomous Surface Vehicles (ASVs) [5] and
Autonomous Underwater Vehicles (AUVs) [6]. Most autonomous systems are used
on large, open water features such as seas, large lakes and rivers, and sample for
long duration, in deep or distant places, with high quality. All of these methods
are relatively slow, spatially restricted, costly, or difficult to deploy; none sample
quickly at multiple locations while overcoming barriers, such as dams or land.

Fig. 1: UAV-Based Water Sampling.

In this paper, we tackle these lim-
itations through the development of
a UAV-based water sampling system
with a focus on enabling safe and reli-
able in-the-field water sampling. Fig. 1
shows the system collecting a water
sample. We designed the system based
on input from our limnologist collab-
orators who specified that the system
be carried and deployed by a single
person, collect multiple samples within
kilometer ranges, and acquire at least
20 ml per sample1.

Obtaining water samples from a
UAV, however, poses challenges that
must be addressed before these systems
can be deployed in the wild. The con-
tributions of this work include: 1) de-
veloping a UAV-based system that au-
tonomously obtains three 20 ml water
samples per flight; 2) integrating and
characterizing sensors on the UAV to
enable reliable, low-altitude flight (1.0 m) over water; 3) testing the system both
indoors in a motion-capture room as well as in the field at lakes and waterways; and
4) validating that key water chemical properties are not biased by using a UAV-based
mechanism. We also identify a number of outstanding challenges to be addressed in
future work, such as determining the impact of waves, winds, and flowing water on
altitude control.

1 The quantity, 20 ml, is enough to perform most standard water chemistry experiments.

UAVs
COURTESY	  OF	  

USVs



Path Planning for Smart Monitoring
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Summary
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• Immense opportunities for statistical machine 
learning in air pollution forecast 

• Assessing uncertainties is crucial 
• Complex algorithms and computer systems 

are easily accessible through web services 
• Where and when to monitor is as important 

as the quality of the measurements
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